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Shell models with conservation properties corresponding to two- and three-dimensional turbulence

are presented together with other test models.

Symmetry breaking in the information transfer

between large and small scales is shown to be responsible for the convexity or the concavity of the
scaling exponents of the structure function associated with intermittency corrections. The same

effect is discussed in other models of intermittency.

PACS number(s): 47.27.—i

I. INTRODUCTION

For large Reynolds numbers, turbulence exhibits a well
developed inertial range in which no characteristic length
scale is observed. Dimensional analysis is then a powerful
tool and had been used (together with simple assump-
tions on isotropic turbulence) more than 50 years ago
by Kolmogorov [1] (K41) to derive the well known k~5/3
law for the velocity spectrum. Although some of these as-
sumptions have been criticized, the k~5/3 law agrees ex-
tremely well with experimental data [2]. However, when
higher-order quantities are considered, deviations from
the Kolmogorov scaling are observed. A common exam-
ple is given by the structure function of the longitudinal
velocity increment dpu(x,t) = u(x + r,t) — u(x,t):

([6eu(x, t)]P) o< rér. (1)

Following Kolmogorov’s phenomenology, the scaling ex-
ponents should grow linearly (§{, = p/3). Deviations
from this simple law [3] are usually considered as a con-
sequence and a proof of intermittency in the dissipation
of energy. Although we agree with this argument, we
consider the alternative point of view in which the de-
viations from the Kolmogorov scaling are related to the
existence of a preferential direction for the transfer of in-
formation. In this paper, we systematically relate the
information transfer between physical quantities to their
two-time correlation. Indeed, when two variables A(t)
and B(t) are coupled through a dynamic evolution equa-
tion, their two-time correlation

Cas(t,t') = (A(t)B(t)) )

is a measure of the information transfer (() denotes the
ensemble average). If C4g(t,t') is larger for ¢t < t' than
for t > t/, the influence of A on the future of B is more
important than the influence of B on the future of A. In
that case, the dominant flux of information is from A to
B. This does not mean that other quantities (such as
energy or enstrophy in the turbulent cascades) could not
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be transferred in the opposite direction.

Various models have been proposed to explain or to
reproduce the deviations from the linear law (£, = p/3).
In some of them, such as the multifractal model [4,5]
and the 8 models [6,7], the link with the Navier-Stokes
(NS) equations more or less disappears. Their major
advantage is to allow analytical calculations, which, in
some cases (see the review [8]), are in good agreement
with experimental data. More recently, She and Leveque
[9] have proposed an improved intermittency model that
keeps track of the NS dynamics by requiring the most
singular structures to be filaments, in agreement with ex-
perimental and numerical observations. However, these
models rely on time-independent arguments and on sta-
tistical properties of turbulence. The temporal evolution
is roughly sketched, if not completely ignored, and these
models are inherently restricted to spatial intermittency.
Thus they are inadequate to show the relation between
deviations from the Kolmogorov scaling and the existence
of a preferential direction for the transfer of information.
On the contrary, shell models [10-12] clearly appear as
very convenient tools to investigate two-time correlations
and transfer of information. Indeed, these models are
low-dimensional dynamic systems in which the tempo-
ral evolution can be explicitly computed. Each dynamic
variable Up,(t) summarizes information from a shell of
wave vectors and can be recorded for rather long peri-
ods by direct integration of the model. Thus, contrary to
most of the other intermittency models, the shell models
allow one to compute time series of some quantities. In
Sec. IT we introduce various shell models and we show in
Sec. IIT how the information transfer might influence the
function &,. We also discuss how a preferential direction
for information transfer is implicitly assumed in the in-
termittency models even when they are apparently time
independent. In particular, we will show in Sec. IV that
without this implicit assumption, the shape of the func-
tion &, would be very different. Finally, the results are
summarized in Sec. V and a discussion is presented on
the possible importance of the existence of a preferential
direction for information transfer in turbulence modeling.
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II. SHELL MODELS

Although the shell models cannot be derived directly
from the NS equations, they have been developed to re-
produce as correctly as possible the NS dynamics. Thus
it is usual to describe the shell models by stressing the
analogy with the NS equations. The Fourier space is di-
vided into shells centered on the origin and including the
wave vectors k such as kog""1/% < |k| < kog™t1/2. The
typical norm of wave vectors in shell n thus follows a geo-
metrical progression k,, = kog™. Here ko represents some
characteristic norm and we adopt the usual choice g = 2.
All the information from velocity Fourier modes with k in
the shell n is then summarized by a single complex vari-
able U,,. The equations governing the evolution of the
U,, are then supposed to reproduce the basic ingredients
of turbulence, i.e., local and conservative bilinear inter-
actions (proportional to k), molecular dissipation (pro-
portional to k%) and external forcing acting in the small
wave vectors range:

Uy = fn — VkZUp +i(ct kny1 Upyqy Unis
+ﬂ k,—,_ U,;+1 U;-—l +’Y kn—l U;:—l U—:—2)’ (3)

where f, and vk2U, are, respectively, the forcing and
dissipation terms. In order to mimic the locality of mode
interaction, the shell variable U, is only coupled to U,, 3,
U,n—1,Upnt1, and U, 42. It has been noted that any choice
of the interaction coefficients {a, 3,7} defines a specific
shell model for which the nonlinear interaction conserves
two quantities. In particular, when the solutions of the
equation

a+Bg* +v9** =0 (4)

correspond to real and positive values of g*, the shell
model conserves the quantity Qx = 3 |Un|%k} [13].
When shell models are used to reproduce the statistical
properties of turbulence, it is natural to impose energy
conservation, i.e., conservation of F = @Qo. In that case,
a+B+v = 0 and we may define {c, 3,7} = p{1,¢, —1+¢€}.
The parameter p can always be included in the defini-

tion of ¢, f, and v. Thus, when energy conservation is
imposed, only € influences the properties of the model.
However, this influence is important. For example, it has
been observed [14] that for € < 0.3843, the system is sta-
ble while it becomes chaotic for € = 0.398. Most of the
authors [10,11,14,15] considering the three-dimensional
case have used ¢ = 1/2. In that case the second so-
lution of Eq. (4) is g¢* = —2 and corresponds to the
conservation of H = Y (—g)"|U.|?. Recently [13], this
choice (¢ = 1/2) has been justified by noting that it cor-
responds to the conservation of helicity in the original NS
equation. This particular value of € also leads to the best
agreement between shell models and experimental data.
For all these reasons, we adopt € = 1/2 for modeling the
three-dimensional (3D) turbulence and we denote M3 the
corresponding shell model.

The two-dimensional (2D) shell model M2 is fully de-
termined by the conservation of both energy and enstro-
phy Z = Q2 ({2,—-5/2,1/2}, € = 5/4). The use of M2
is less frequent that M3 mainly because the cascade pic-
ture of 2D turbulence is more questionable. A recent
approach [16] shows that the behavior of a slightly mod-
ified shell model may be understood using formal non-
equilibrium statistical mechanics close to local equilib-
rium. The observed fluxes of the conserved quantities
are then explained by simple diffusion due to the gra-
dients of conjugate quantities of Q2 and Qo instead of
cascade processes. However, the shell model used here
does not seem to lead directly to the same conclusion
and we have not found any convincing argument to dis-
tinguish definitely between the local equilibrium and the
cascade picture of 2D shell models.

Finally, we also introduce two test models: Ma,
for which the conserved quantities are Q4 and Qg
({2,-17/8,1/8}, i.e., € = 17/16), and Mb, for which the
roots of Eq. (4) coincide so that only one quantity is con-
served (A = 4). For Mb, the use of the notation € is mean-
ingless since energy is not conserved ({2,—1/4,1/128}).
The choice of these models is motivated in Sec. III by the
dynamic behavior of the shell variables.

The forcing f,, used here is a random Gaussian noise
acting on modes 2 and 3 and for which we can choose the

TABLE I. Main characteristics of the shell models used in this paper.

Characteristic M3 M2 Ma Mb
coefficients {a, 8,7} {2,—-1,-1} {2,—-5/2,1/2} {2,—-17/8,1/8} {2,-1/4,1/128}
conserved quantities Qo, H Qo, Q2 Qo, Qa Qs
number of shells N 19 21 20 20

ko 1/8 1/4 1/4 1/4
injection rate Qo (E=4x107%) Q2 (77 = 0.12) Qs (¢ = 6.0) Qa4 ({ = 4.0)
viscosity v 10~ 6 x 10712 10714 5x 10714

U: damping no —10U, —0.05U, —0.05U,
kdiss (E/Vs)l/‘l% k16 ('F]/Vs)l/ﬁz kzo (C/l/a)l/sm k19 (C_/Va)l/sw klg
scaling law UZ o« k. *P; u 1/3 1 5/3 5/3
scaling law t.(n) < k&; p -2/3 0 2/3 2/3
inertial range (IR) 4-15 6-16 8-16 9-16
turnover times in the IR 4700 — 51000 2.7 x 10° — 1.5 x 10° 9.1 x 10° — 2900 6.4 x 10° — 14000
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injection rate of the conserved quantity (for instance, &,
the energy injection rate for M3). A comparison with a
deterministic forcing with the same injection rate does
not show any major difference. In M2, Ma, and Mb sim-
ulations, we add a “large-scale damping” to avoid any
piling up of energy in the first shell. The definitions of
all the parameters entering in these shell models are sum-
marized in Table 1.

The numerical simulations of shell models do not di-
rectly give the structure function associated to the lon-
gitudinal velocity increments (1). However, equivalent
information can be obtained by computing higher mo-
ments of the shell variables. Indeed, each U, is a measure
of the velocity change over length scales of the order of
k;!. Thus they play the same role as the velocity incre-
ments. It is then usually considered that the exponents
& in

(|UIP) oc kv (5)

are the same as the exponents appearing in the quan-
tities (1). This is the traditional way shell models have
been used to explore intermittency corrections to the Kol-
mogorov scaling. The information given by (5) is related
to the spatial intermittency of the velocity field.

III. INFORMATION TRANSFER AND
STRUCTURE FUNCTION IN SHELL MODELS

Shell models give a simplified picture of turbulence by
drastically reducing the spatial description of the system.
Indeed, the complete space is reduced to a small set of
points related to shells. However, the temporal evolu-
tion is described by a continuous variable and provides
detailed information regarding dynamic behaviors. This
interesting property has already been exploited [10,11]
for computing the Lyapunov exponents associated with
the shell variables dynamics. Here we focus on quanti-
ties that are related to the two-time correlation between
neighbor shells. It will be convenient to present the re-

sults in terms of the real variables p, introduced in Ref.
[15]:

pn ()€™ =k, UL (1), (6)

where p is chosen such that p,, o< 1 by using dimensional
analysis based on Kolmogorov-type arguments. This ex-
ponent depends on the model (x = 1/3 for M3 and pp = 1
for M2; see Table I). The solution p, = 1 Vn is the fixed
point of the unforced, inviscid shell model and leads to
the “Kolmogorov” linear law &, = pp. We now intro-
duce the centered and normalized two-time correlations
for the p,

Chmi (1) = (Pn(t)pn(t + 7t7)) — (Pn){pn’)
, V{P2) = (pn)2V/(P2)) = (pn)?’

where () denotes the time average. In practice, aver-
ages are evaluated over a large number of turnover times
of the slowest variable (see Table I). As discussed in
the Introduction, the quantities (7) are related to the
information transfer between shell variables. If the max-
imum of Cy /() is achieved for 7 = 7; ., > 0 (< 0),
the model is considered to experience a direct (inverse)
transfer of information from variable n to variable n’. By
definition, these two-time correlations have the follow-
ing properties: Cp ,(0) = 1 and Cpr 1n(7) = Cp i (—7).
Moreover, the asymptotic value of these correlations van-
ishes [Cp ' (7) = 0 for 7 — o00]. Indeed, for large 7, p,
and p,,+ are independent quantities and {(p, (t) pn: (t+715))
may be approximated by {pn){pn') so that the numerator
in (7) vanishes. Here T is a dimensionless quantity that
measures the delay between the arguments of variables
pr. and p, in (7) in terms of the characteristic time t5, of

shell n defined by
c Pn (t) >
te = ( = . 8
2= (50 ®)

A simple dimensional analysis provides a rough estimate
for these characteristic times tS oc k¥~1, which is rea-
sonably well fitted by the numerical results (Fig. 1). Our

()
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FIG. 2. Deviations 6§, = £, — ¢ p from the Kolmogorov
scaling are presented for M3 ( ), M2 (-+--+), Ma (—=—=),
and Mb (-—-—- ) in the lower part of the figure. The up-
per part of the figure shows the “discrete second derivative”
(0€p+1—0€p) —(6€p —6€p—1) of the €. The M3 and M2 curves
are convex, the Ma curve is almost linear, and the Mb curve
is concave.

choice for the models Ma and Mb is motivated by the par-
ticular scaling of their characteristic times (t& o K2/ %),
which is the opposite scaling of M3 (proportional to
k2 %). Fast (slow) variables in M3 should thus corre-
spond to slow (fast) variables in Ma and Mb.

For each model, we have computed the &, by using the
method proposed by Kadanoff et al. [13], which elimi-
nates the period three oscillations in the spectra (Fig. 2).

1.0

In order to distinguish between convex and concave &,
we have shown on the same figure the discrete second
derivative of the function &," = (§p+1— &) — (€p — &p—1)-

A. M3

The simulation of M3 shows a well developed inertial
range determined by a constant energy flux. The scal-
ing exponents £, exhibit the expected convex deviations
to the K41 scaling. We present the two-time correla-
tions Cpny Cnntir---3Cnnts in Fig. 3 for n = 10.
The long-time behavior of these functions does not al-
low an accurate determination of the decay exponents ¢
[Crnt1(T) o< 77%). However, we can compare this decay
with the theoretical prediction of Kadanoff et al. [13].
By using the relations (Legendre transforms) derived in
this reference between the decay exponents and the &,,
we have obtained ¢ ~ 0.047. The decay we have nu-
merically observed would clearly correspond to a much
higher value of ¢. The long-time shapes of the C, n4p
look independent of p. In the embedded figure we fo-
cus on the short-time behavior. The maximal value of
the correlation Cp np is achieved after a delay 7, .. ,-
These delays are plotted for various n in Fig. 4. They
are always positive. The energy cascade in 3D turbu-
lence is thus associated with a dominant direct transfer
of information. This observation is in agreement with the
commonly accepted picture of a dominant influence from
slow to fast variables. One also observes the ordering

* * *
Tn,n+3 > Tn,n+2 > Tn,n+1 > 0. (9)

In the inertial range, the dimensionless time delays
should be constant (7,,; = 7;) since they are nor-

0.5 : :

\oo
oo
\ ©°000000

two-time correlation
(=)
()
o
»

©00000000000000000

FIG. 3. Time correlations Cp n4p(7) for
n =10 and p = 0, 1, 2, and 3 (dotted, solid,
dashed, and dot-dashed lines, respectively)
for M3. The circles show a decaying func-
tion proportional to 77°%47 as predicted by
Benzi et al. In the inset the correlations are
shown in the region around 7 = 0 with the
same vertical scale. The maximal values of
the correlations p # 0 are achieved after a
positive delay 7, ,4,-

-40 " 0

normalized time
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malized by the appropriate tf,. Actual measurements
show a weak n dependence in 7, ,,,, which might be
due to sampling limits. A good estimate for 7; is then
obtained by averaging the 7; .., over n in the inertial
range (n € [6,12]) 7; = (7; ,4;)n- The values obtained
for 71, T2, and T3 suggest that the cascade is essentially
dominated by first neighbor interactions. Indeed, the
real time needed to reach the maximal value of Cy, ny2
is Totl. It is well approximated by the sum of the real
times needed to reach the maximal values of, respectively,
Chnt1 (e, 71ts) and Crpq nie (e, 71t ;). Indeed, we
have measured that 75t ~ 7115 +T1t5 | or, equivalently,
73 ~ 71(1 4 g~2/3). Analogously, we have measured that
73 ~ 71 (14 g~%/3 4 g—*/3), supporting again the picture
of dominant first neighbor interactions. Quantitatively,
we have

71 =0.29 ,
72=049=1697 ~7 (149723 =1637, (10)
T3=056=1937 ~7 (1+9 3 4+g7 %3 =2027 .
This corresponds to the usually accepted phenomenol-
ogy of the inertial range (dominated by local interac-
tions) even if the shell variables U, are directly coupled
to both U,+; and U,+2. We also note that the third-
neighbor correlation does not seem to be influenced by
the observed period-three oscillations in the spectra and
Cr n+3 looks similar to the other correlations.

Because of the interest of the multipliers introduced by

Benzi et al. [15] for the 3D case (see Sec. IV), we have
also studied the quantities

an(t) = pnt1(t)/pn(t) (11)

and their two-time generalizations

ba(t',t) = pnia(t')/pn (). (12)

Here we have computed the two-time correlations
(an(t)an (t +7t7)) — (an)(an’)
V(@) = (an)?/(aZ)) — (an)?
and the averaged two-time multipliers

bo(T) = (bn(t + 7S, 1)). (14)

The t dependence disappears because of the time aver-
aging. The results are presented in Fig. 5. Again, we
observe that these quantities are not centered on 7 = 0
(except of course for A, ,). It is thus interesting to note
that the measurements presented in Ref. [15] for the ver-
ification of the independence of the multipliers, which
are equivalent to our A, ,4+p(0), did not correspond to
the highest correlation between the considered quantities.
Fortunately, even at their maximal value, the correlation
remains small enough to justify the approximation of sta-
tistical independence between the different a,,. We also
note that the correlations A, ./ (7) vanish much faster
than the correlations Cp, /(7). This is probably due to
the fact that the variables p,, entering the quantity C,, -
account for slow variations of the spectrum amplitude
around its equilibrium value while the ratios a, in A,
only measure deviations from the local slope of the spec-
trum. Clearly, the amplitude of the spectrum varies on
time scales much longer than the local and instantaneous
value of the characteristic exponent. Following this point
of view, the p,, and their correlations are more suitable for
describing bursts of energy and the mechanism of charge
and discharge in the model than the variables a(t).
Finally, we note that the discrepancy between the ob-
served tS and the dimensional analysis prediction k¥~ is
more important for M3 than for the other models (Fig. 1).
One might interpret this effect as a consequence of the
dominating transfer of information coming from the slow
variables, which could slow down the cascade process in

An,n’ (T) =

(13)
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the high k range. However, we do not have specific mea-
surements to quantify and to support this possible effect.

B. M2

The simulation of M2 shows an inertial range with con-
stant enstrophy flux and without energy flux in agree-
ment with theoretical arguments [17]. The deviations
from the dimensional analysis are weak and slightly con-
vex (see Fig. 2). The correlations Cy, ,1,(7) are plotted
in Fig. 6 for n = 12 and p = 0,1,2,3. The correlation
p = 1 exhibits clear and simultaneous direct and reverse
transfers of information in contrast with the strongly

1.0 —

dominant direct information transfer in M3. For the vari-
able U,, the maxima of the two-time correlation corre-
spond to two different phenomena: reception of informa-
tion from U,4; (peak at 7 &~ —1.9) and transmission of
information to U, 41 (peak at 7 = +1.9). However, since
the maximum corresponding to 7 =~ +1.9 is higher, the
dynamics seems to be slightly dominated by direct trans-
fer of information. The correlations p = 2 and p = 3
exhibit also a disymmetry supporting the dominance of
the forward transfer, but do not seem to be related to the
first-neighbor correlation like in M3. If it were the case,
we could expect to have a higher positive peak for the
second-neighbor correlation at 7 ~ 0, resulting from the
combination of forward and backward exchanges of in-

FIG. 6. Time correlations Cn nyp(7) for
n =12 and p =0, 1, 2, and 3 (dotted, solid,
dashed, and dot-dashed lines, respectively)
for the M2 model. The two peaks in Cp nt1
correspond to direct and reverse transfers of
information. The direct transfer is domi-
nant. This figure is restricted to the range

two-time correlation

T € [-75,75] for the sake of clarity. Within
this range it is not clear that Cp n4p(7) van-
ishes for large 7. However, this theoretical
prediction has been numerically checked by
extending the measurement to 7 =~ 300.

normalized time

75
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1.0

FIG. 7. Time correlations Cp nyp(7) for
n =10 and p = 0, 1, 2, and 3 (dotted, solid,
dashed, and dot-dashed lines, respectively)

two-time correlation

10 for Ma. The two peaks in Cp n41 correspond
to direct and reverse transfers of information.

normalized time

formation with variable n+ 1. Thus, contrary to M3, M2
does not seem to be dominated by first-neighbor inter-
actions. We note that shell models for two-dimensional
turbulence are sometimes criticized because nonlocal in-
teractions could be important in two dimensions. Here
we see that M2 seems to develop nonlocal interactions,
while it has been constructed using local coupling only.

C. Ma and Mb

Simulations of Ma and Mb also show an inertial range
with a constant flux of @4. The scaling exponents of the
structure functions, shown in Fig. 2, exhibit deviations

75

from the Kolmogorov-like prediction §, = 5/3p: slopes
at the beginning of the curves are given by &; = 2.01 for
Ma and £; = 1.77 for Mb. Thus energy conservation in
Ma strongly modifies the slope of the spectra, even if the
energy flux vanishes in the Q4 cascade. The correlation
functions of Ma and Mb are presented in Figs. 7 and
8 for n = 10 and n = 12. Their structure are similar
to the M2 case. The information transfers are similar
in both directions in the Ma case. It is interesting to
note that the reverse information transfer dominates in
the Mb case, while there is no reverse cascade in this
model. We thus conclude that the information transfers
are not directly related to the transport of the conserved
quantities.

FIG. 8. Time correlations Cp nyp(7) for
n =12 and p =0, 1, 2, and 3 (dotted, solid,
dashed, and dot-dashed lines, respectively)

two-time correlation

for the Mb model. The two peaks in Cn ni1
correspond to direct and reverse (and domi-
nant) transfers of information.

normalized time
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We also note for Ma and Mb that the correlation
Chr,n+p(T = 0) is negative for p # 0. Thus values of p,
larger (smaller) than (p,) are preferentially observed to-
gether with values of p,4, smaller (larger) than (pp4p)-
Physically, this corresponds to a return to the average
spectrum by an exchange of energy between neighbor
shells. This effect is also observed for M2 and is totally
different from the M3 case for which the positive corre-
lation Ch, n4p(7 = 0) for p # 0 might be interpreted as a
return to the average spectrum by a collective variation
of several neighbor shell variables.

D. Transfer of information and convexity of the &,

By analyzing these four models, we have shown that
their dynamics are characterized by the existence of
transfers of information. The directions of these trans-
fers are different in each case: strongly dominant direct
transfer for M3, dominant direct transfer for M2, no pref-
erential transfer for Ma, and dominant reverse transfer
for Mb. These different behaviors are only partially un-
derstood in terms of the characteristic time scales of the
model: it seems indeed reasonable to consider that a fast
variable F' does not influence a slower one S, because its
average (taken on a time such that S had not evolved)
vanishes, while S influences F' because it acts like a drift
on F'. Nevertheless, this argument leads to the correct
conclusion only for M3 and Mb. It is not able to de-
scribe the properties of M2 and it does not explain the
differences between Ma and Mb. Arguments using the
existence of conserved quantities do not seem more use-
ful in this description. Thus the two-time correlations
provide original and independent information on the dy-
namics of the models. Also, it is remarkable that there
is a close connection between the direction of the infor-
mation transfer described by these two-time correlations
and the observed curvature of the &, in each model. We
have characterized this curvature by its second derivative
and we observe that it is negative for M3 (strongly dom-
inant direct information transfer), slightly negative for
M2 (slightly dominant direct information transfer), van-
ishing for Ma (no net information transfer), and slightly
positive for Mb (dominant inverse information transfer).
It is thus reasonable to conclude that the dominance of
reverse versus direct transfer of information is a key phe-
nomenon determining whether the intermittency correc-
tions are convex or concave. It is then interesting to
determine how this phenomenon, fully captured by the
complex dynamics of shell models, may be accounted for
in other approaches.

IV. INFORMATION TRANSFER AND
STRUCTURE FUNCTION IN OTHER MODELS

A time-independent model has been proposed to sketch
the dynamics generated by the shell model equations [15]
for the 3D case. It is assumed that the variable p, is
related to p,_; by a multiplicative random process given
by

Pn = anpn—1=C(1 — pSn_1)pn-1, (15)
where S; = sin(Aj) = sin(fj41 + 65 + 6;-1). A uniform
distribution in [—m,0] is chosen for the independent A;
in order to fit the observed §; distribution. Assuming
stationarity, the equations for the moments (U?) lead to

o{pEpj+1Pi+2Si+1) + B(PEpi—1Pj+15;)

+Y(P5pi-1pj~25;-1) =0 (16)
or, using (15) and the definition IT, = ((1 — pS,—_1)?),

aCGH§+2H2(H1 - Hz) + ﬂCsﬂp+2Hp+1(H1 — Hz)

+Yp 41 (I — Tpta) = 0. (17)
This set of equations is a recurrence for the II,,, which,
has a solution for M3 when C3II3 = 1 (energy constraint)
and p ~ 0.54. The &, are given by

€p = p/3 — logy (C*I)

and fit the convex deviations from the Kolmogorov scal-
ing law for M3.

This derivation is self-consistent, but relies at the very
beginning on the assumption that the information trans-
fer is dominantly forward. Indeed p, is given by (15)
so that the amplitude of p,_; influences p,. In order
to stress the importance of this assumption, we first no-
tice that Egs. (16) and (17) are invariant if we change
{a, pj,S;} into {v,p—;,5_;}. We then introduce the
multiplicative random process

(18)

(19)

which corresponds to a backward transfer of information.
The same arguments leading to Eq. (17) now yields

& = p/3 + log, (CPIL,)

which is concave. Thus, here again there is a univocal
relation between the curvature of £, and the sense of the
information transfer.

In fact, this relation is also valid for the simpler ap-
proach developed by Paladin and Vulpiani [18], using
the Cauchy-Schwarz inequality [19]. Assuming that the
random variables 8U,, satisfy the scaling laws (|6U|™) =
Cn(l—%)f" (lo is a characteristic length), the Cauchy-
Schwarz inequality implies

1 2¢, 1 Entn 1 €n—n
an (Z;) S Cn+h (E) Cn__h (E) . (21)

For large Reynolds numbers, the inertial range is
bounded by the large-scale L, where energy is injected.
A possible choice for lg could then be L, which implies
!l < L and, in turn,

nth + &n— 1 Crin Cn_
€n 2 E—Lhz—g-—h + Elogl/L (‘*%’2—}1) - (22)

pi =bjpjr1=C(1 — pSit1)pj+1 ,

(20)

In the limit I[/L — 0, the last term of (22) vanishes
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and the convexity of the §, is proven (in agreement with
experimental data). However, arguments based on the
Cauchy-Schwarz inequality lead to the correct convex
&, only because they are combined with the assumption
that information is transferred from large to small wave-
lengths. In that case, it is natural to consider that lo is
given by the largest length in the system. On the con-
trary, if information is mainly transferred from small to
large wavelengths, it would be more natural to consider
that lo is the smallest wavelength £ in the problem and
concave §,, would be obtained. When information trans-
fers are direct and reverse, the double limit L < lp < £
would prove the linearity of £,. The Cauchy-Schwarz in-
equality is thus compatible with all the behaviors of our
shell models.

It appears also that the assumptions made in the
random-3 model [7] are of the same nature. The con-
vexity of the £, is a consequence of the dependence of
the small-scale variables on the large-scale ones, which
is equivalent to the introduction of a one-way transfer of
information.

In all these cases, the proof of convexity of the £, re-
lies on an implicit assumption of the direction of informa-
tion transfer, which cannot be derived from mathematical
considerations. The introduction of the opposite assump-
tion leads to the proof of the concavity of the &,. This
analysis agrees with our conclusion for the shell models.

V. CONCLUSION

We have shown that there is a close connection be-
tween the structure function and the information trans-
fer (described by two-time correlations) in a shell model.
Four shell models characterized by different conservation
properties have been considered. The first one M3, con-
serving both energy and helicity, is used to model the
three-dimensional turbulence. For two-dimensional tur-
bulence, we have studied the model M2 conserving both
energy and enstrophy. We have also considered two other
test models Ma and Mb, which have special conservation
laws that are not related to particular physical systems.
In each case, the two-time correlations of the shell vari-
ables are obtained by direct simulation of the model.

The simulation of M3 shows a single maximum after a
positive delay 7; in the correlation between shell variables
n and n + 1. We thus conclude that M3 is characterized
by a dominant forward transfer of information, i.e., the
variable n is influenced more by the past of shell n — 1
than by the past of shell n + 1. Moreover, the cascade
processes in M3 seem to be dominated by the transfer
between first neighbors. Indeed, the maximal correlation
between second (or more distant) neighbors occurs after
a delay that is well approximated by the simple addition
of the delays needed to reach the maximal correlations
between first neighbors. The other models M2, Ma, and
Mb show both forward and backward transfers of infor-
mation and two peaks are observed in the correlation
function with, respectively, positive and negative char-
acteristic times. The relative importance of these peaks
shows that M2 and Mb are dominated, respectively, by

direct and reverse transfers of information. As for Ma,
both forward and backward transfers seem to be equiva-
lent.

These properties of the transfer of information have
been compared to the £, of the high-order correlation

(JUnl?) k% for each shell model. It appears that the
main direction of information transfer seems to deter-
mine univocally the characteristics of the intermittency
corrections in the &, (convex or concave). More precisely,
systems with concave (convex) &, are characterized by
dominant backward (forward) information transfers. It
is also important to note that this property of the &,, can-
not be derived so easily from other quantities such as the
scaling of characteristic time in each shell or the direction
of cascade of the conserved quantities. The same relation
between information transfer and the £,, can be obtained
analytically for other intermittency models such as the
multiplicative random process approach by Benzi et al.
[15], the random-8 model [7], or the results derived from
the Cauchy-Schwarz inequality [18,19].

The main result of our approach is to provide an orig-
inal tool to analyze intermittency corrections to Kol-
mogorov scaling in shell models and in other simple tur-
bulence models. It should be interesting to extend the
analysis of two-time correlations to more complex mod-
els and even to real turbulence. Experiments [3] have
shown that the intermittency corrections are clearly con-
vex in three-dimensional turbulent systems. If our anal-
ysis can be extended to real turbulence, it is reasonable
to believe that turbulence is characterized by a forward
information transfer. This could be of major interest in
turbulence modeling. For instance, models for the sub-
grid scale stress 7;; = W;u; — u;%; are needed in large
eddy simulation (LES) of complex flows [20]. Here we
denote by the overbar the filtering operation that is used
to transform the NS equations into the LES equation.
Usually, models for the subgrid scale stress 7Y are given
by some functional of the filtered velocity field taken at
the same time: 'ril;-’[ (t) = Ti%l [@(t)]. Our analysis sug-
gests that the small scales evaluated at time ¢t are more
strongly correlated with the large scales observed at time
t — 7. It would be more natural to propose some subgrid
scale model with the property

M) =Mt -t") .

ij (23)

The determination of t* requires a careful analysis of two-
time correlations in real turbulence, which is a difficult
problem. However, the use of the general formula (23)
could improve the accuracy of subgrid scale models for
LES. This accuracy is often measured [21] in terms of
the correlation between the model Til_;ff and the observed
values of the subgrid scale stress 7;; = w;u;. Thus, by
definition of the information transfer, we expect 7;;(t)
to be more strongly correlated with 'rgf [@i(t — t*)] than

T [ (t)].
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